501 research outputs found

    Modelling of root reinforcement and erosion control by ‘Veronese’ poplar on pastoral hill country in New Zealand

    Get PDF
    Background The control of erosion processes is an important issue worldwide. In New Zealand, previous studies have shown the benefits of reforestation or bioengineering measures to control erosion. The impetus for this work focuses on linking recent research to the needs of practitioners by formulating quantitative guidelines for planning and evaluation of ground bioengineering stabilisation measures. Methods Two root distribution datasets of ‘Veronese’ poplar (Populus deltoides x nigra) were used to calibrate a root distribution model for application on single root systems and to interacting root systems at the hillslope scale. The root distribution model results were then used for slope stability calculations in order to quantitatively evaluate the mechanical stabilisation effects of spaced trees on pastoral hillslopes. Results This study shows that root distribution data are important inputs for quantifying root reinforcement at the hillslope scale, and that root distribution strongly depends on local environmental conditions and on the tree planting density. The results also show that the combination of soil mechanical properties (soil angle of internal friction and cohesion) and topographic conditions (slope inclination) are the major parameters to define how much root reinforcement is needed to stabilise a specific slope, and thus the spacing of the trees to achieve this. Conclusions For the worst scenarios, effective root reinforcement (>2 kPa) is reached for tree spacing ranging from 2500 stems per hectare (sph) for 0.1 m stem diameter at breast height (DBH) to 300 sph for 0.3 m stem DBH. In ideal growing conditions, tree spacing less than 100 sph is sufficient for stem DBH greater than 0.15 m. New quantitative information gained from this study can provide a basis for evaluating planting strategies using poplar trees for erosion control on pastoral hill country in New Zealand

    Chaotic maps and flows: Exact Riemann-Siegel lookalike for spectral fluctuations

    Full text link
    To treat the spectral statistics of quantum maps and flows that are fully chaotic classically, we use the rigorous Riemann-Siegel lookalike available for the spectral determinant of unitary time evolution operators FF. Concentrating on dynamics without time reversal invariance we get the exact two-point correlator of the spectral density for finite dimension NN of the matrix representative of FF, as phenomenologically given by random matrix theory. In the limit NN\to\infty the correlator of the Gaussian unitary ensemble is recovered. Previously conjectured cancellations of contributions of pseudo-orbits with periods beyond half the Heisenberg time are shown to be implied by the Riemann-Siegel lookalike

    Two-Stage Priming of Allogeneic Natural Killer Cells for the Treatment of Patients with Acute Myeloid Leukemia: A Phase I Trial

    Get PDF
    Human Natural Killer (NK) cells require at least two signals to trigger tumor cell lysis. Absence of ligands providing either signal 1 or 2 provides NK resistance. We manufactured a lysate of a tumour cell line which provides signal 1 to resting NK cells without signal 2. The tumor-primed NK cells (TpNK) lyse NK resistant Acute Myeloid Leukemia (AML) blasts expressing signal 2 ligands. We conducted a clinical trial to determine the toxicity of TpNK cell infusions from haploidentical donors. 15 patients with high risk AML were screened, 13 enrolled and 7 patients treated. The remaining 6 either failed to respond to re-induction chemotherapy or the donor refused to undergo peripheral blood apheresis. The conditioning consisted of fludarabine and total body irradiation. This was the first UK trial of a cell therapy regulated as a medicine. The complexity of Good Clinical Practice compliance was underestimated and led to failures requiring retrospective independent data review. The lessons learned are an important aspect of this report. There was no evidence of infusional toxicity. Profound myelosuppression was seen in the majority (median neutrophil recovery day 55). At six months follow-up, three patients treated in Complete Remission (CR) remained in remission, one patient infused in Partial Remission had achieved CR1, two had relapsed and one had died. One year post-treatment one patient remained in CR. Four patients remained in CR after treatment for longer than their most recent previous CR. During the 2 year follow-up six of seven patients died; median overall survival was 400 days post infusion (range 141–910). This is the first clinical trial of an NK therapy in the absence of IL-2 or other cytokine support. The HLA-mismatched NK cells survived and expanded in vivo without on-going host immunosuppression and appeared to exert an anti-leukemia effect in 4/7 patients treated

    Tunneling and the Band Structure of Chaotic Systems

    Full text link
    We compute the dispersion laws of chaotic periodic systems using the semiclassical periodic orbit theory to approximate the trace of the powers of the evolution operator. Aside from the usual real trajectories, we also include complex orbits. These turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. The results obtained, illustrated with the kicked-Harper model, are in excellent agreement with numerical simulations, even in the extreme quantum regime.Comment: 11 pages, Latex, figures on request to the author (to be sent by fax

    Quantum Chaotic Dynamics and Random Polynomials

    Full text link
    We investigate the distribution of roots of polynomials of high degree with random coefficients which, among others, appear naturally in the context of "quantum chaotic dynamics". It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, we study in detail the particular case of self-inversive random polynomials and show that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wave-functions is also considered. For that purpose we introduce a family of random polynomials whose roots spread uniformly over phase space. While these results are consistent with random matrix theory predictions, they provide a new and different insight into the problem of quantum ergodicity. Special attention is devoted all over the paper to the role of symmetries in the distribution of roots of random polynomials.Comment: 33 pages, Latex, 6 Figures not included (a copy of them can be requested at [email protected]); to appear in Journal of Statistical Physic

    A Lovelock black hole bestiary

    Full text link
    We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua do not supporting black holes in vast regions of the space of gravitational couplings, multi-horizon black holes, and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT.Comment: 40 pages, 16 figures; v2: references added and minor amendments; v3: title changed to improve its accuracy and general reorganization of the results to ameliorate their presentatio

    Post-landslide soil and vegetation recovery in a dry, montane system is slow and patchy

    Get PDF
    Landslides are common disturbances in forests around the world, and a major threat to human life and property. Landslides are likely to become more common in many areas as storms intensify. Forest vegetation can improve hillslope stability via long, deep rooting across and through failure planes. In the U.S. Rocky Mountains, landslides are infrequent but widespread when they do occur. They are also extremely understudied, with little known about the basic vegetation recovery processes and rates of establishment which restabilize hills. This study presents the first evaluation of post-landslide vegetation recovery on forested landslides in the southern Rocky Mountains. Six years after a major landslide event, the surveyed sites have very little regeneration in initiation zones, even when controlling for soil coverage. Soils are shallower and less nitrogen rich in initiation zones as well. Rooting depth was similar between functional groups regardless of position on the slide, but deep-rooting trees are much less common in initiation zones. A lack of post-disturbance tree regeneration in these lower elevation, warm/dry settings, common across a variety of disturbance types, suggests that complete tree restabilization of these hillslopes is likely to be a slow or non-existent, especially as the climate warms. Replacement by grasses would protect against shallow instabilities but not the deeper mass movement events which threaten life and property

    Geometry of Polynomials and Root-Finding via Path-Lifting

    Full text link
    Using the interplay between topological, combinatorial, and geometric properties of polynomials and analytic results (primarily the covering structure and distortion estimates), we analyze a path-lifting method for finding approximate zeros, similar to those studied by Smale, Shub, Kim, and others. Given any polynomial, this simple algorithm always converges to a root, except on a finite set of initial points lying on a circle of a given radius. Specifically, the algorithm we analyze consists of iterating zf(z)tkf(z0)f(z)z - \frac{f(z)-t_kf(z_0)}{f'(z)} where the tkt_k form a decreasing sequence of real numbers and z0z_0 is chosen on a circle containing all the roots. We show that the number of iterates required to locate an approximate zero of a polynomial ff depends only on logf(z0)/ρζ\log|f(z_0)/\rho_\zeta| (where ρζ\rho_\zeta is the radius of convergence of the branch of f1f^{-1} taking 00 to a root ζ\zeta) and the logarithm of the angle between f(z0)f(z_0) and certain critical values. Previous complexity results for related algorithms depend linearly on the reciprocals of these angles. Note that the complexity of the algorithm does not depend directly on the degree of ff, but only on the geometry of the critical values. Furthermore, for any polynomial ff with distinct roots, the average number of steps required over all starting points taken on a circle containing all the roots is bounded by a constant times the average of log(1/ρζ)\log(1/\rho_\zeta). The average of log(1/ρζ)\log(1/\rho_\zeta) over all polynomials ff with dd roots in the unit disk is O(d){\mathcal{O}}({d}). This algorithm readily generalizes to finding all roots of a polynomial (without deflation); doing so increases the complexity by a factor of at most dd.Comment: 44 pages, 12 figure

    An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa

    Get PDF
    Members of the CsrA family of prokaryotic mRNA-binding proteins alter the translation and/or stability of transcripts needed for numerous global physiological processes. The previously described CsrA family member in Pseudomonas aeruginosa (RsmA) plays a central role in determining infection modality by reciprocally regulating processes associated with acute (type III secretion and motility) and chronic (type VI secretion and biofilm formation) infection. Here we describe a second, structurally distinct RsmA homolog in P. aeruginosa (RsmF) that has an overlapping yet unique regulatory role. RsmF deviates from the canonical 5 β-strand and carboxyl-terminal α-helix topology of all other CsrA proteins by having the α-helix internally positioned. Despite striking changes in topology, RsmF adopts a tertiary structure similar to other CsrA family members and binds a subset of RsmA mRNA targets, suggesting that RsmF activity is mediated through a conserved mechanism of RNA recognition. Whereas deletion of rsmF alone had little effect on RsmA-regulated processes, strains lacking both rsmA and rsmF exhibited enhanced RsmA phenotypes for markers of both type III and type VI secretion systems. In addition, simultaneous deletion of rsmA and rsmF resulted in superior biofilm formation relative to the wild-type or rsmA strains. We show that RsmF translation is derepressed in an rsmA mutant and demonstrate that RsmA specifically binds to rsmF mRNA in vitro, creating a global hierarchical regulatory cascade that operates at the posttranscriptional level
    corecore